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and Lab. MATIS-INFM, and CNISM, Sez. Catania, and INFN, Sez. Catania,

Via S. Sofia, 64, I-95123 Catania, Italy
zOxford University, Oxford, UK

xDepartment of Physics, University of Antwerp,
Groenenborgerlaan 171, B-2020 Antwerp, Belgium

(Received 10 November 2005)

Anyons have been used earlier to interpret the oscillatory orbital magnetization in the Laughlin
two-dimensional (2D) electron liquid, which is the seat of the fractional quantum Hall effect.
Here, we examine first the anyon fractional statistics distribution function in some detail.
Then, applications are treated to other 2D systems, namely (a) a vibrating lattice such as a gra-
phene layer in crystalline graphite, and (b) 2D insulating ferromagnets.
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1. Introduction

That anyonic fractional statistics become relevant in two-dimensional (2D) systems was
demonstrated by Leinaas and Myrheim [1] (see also ref. [2]). An early application was
then made by Lea et al. [3,4] to discuss the de Haas–van Alphen-like oscillatory orbital
magnetism in the Laughlin electron liquid which is the seat of the fractional quantum
Hall effect [5]. In parallel, a study was also made of the anyon fractional
distribution function f�ð�Þ, where � denotes the particle energy [6–8]. These early
proposals, which successfully interpolated between Bose–Einstein (BE) and Fermi–
Dirac (FD) limits using a fractional statistics parameter � in the range between 0
and 1, BE corresponding to the end-point �¼ 0 and FD to the other extreme �¼ 1,
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were completed by the work of Wu [9]. Wu’s distribution function for anyon statistics
can then be presented as

f�ð�Þ ¼
1

w½eð���Þ=kBT� þ �
, ð1Þ

where T is temperature, � denotes the chemical potential, and the case � ¼ 1
2 refers

to ‘semions’. In equation (1), the ‘generalized exponential’ w(�) obeys the functional
equation [9]

w�ð�Þ½1þ wð�Þ�1��
¼ � � eð���Þ=kBT, ð2Þ

and has been studied analytically by Joyce et al. in ref. [10]. Figure 1 shows plots
of f�ð�Þ for 0 � � � 1. One recovers a quasifermionic behaviour for all values of �
such that 0 < � � 1, with f� characterized by an inflection point implicitly defined by
the condition

w ¼ �1þ �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �þ �2

p
: ð3Þ

Such an inflection point approximates the Fermi level as defined in ref. [9].
We turn now to apply the above distribution function results to 2D assemblies.
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Figure 1. Distribution functions for anyon statistics, equation (1), at finite temperature T 6¼ 0, for equally
spaced values of statistics parameter � ranging between �¼ 0 (BE) and �¼ 1 (FD). The dashed line connects
the inflection points of the distribution functions in the quasifermionic cases (0 < � � 1). Such points
approximate the Fermi level.
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2. Specific heat contribution for a 2D vibrating model lattice: relevance to

low-temperature specific heat of a graphene layer

Phonon properties are altered crucially at low temperatures as one goes from a truly
three-dimensional material like diamond, with a lattice specific heat CV / T 3 at
low T, to a layered crystal like graphite, with only weak van der Waals interactions
between graphene layers [11,12].

The vibrational properties of a discrete square lattice, including both nearest and
next-nearest neighbours interactions, have been studied analytically by Montroll [13].
Montroll considers a discrete square lattice of equal masses M connected by harmonic
‘springs’ with Hookean constants �0 and �00, say, between nearest and next-nearest
neighbours, respectively. Born-von Kármán periodic boundary conditions are applied
to such a lattice. Montroll then restricts his analysis to cases where
� ¼ ½1þ ð�0=2�00Þ��1 < 1

2, and particularly to the case � ¼ 1
3, where analytical results

can be derived in closed form. As in Debye theory for the frequency spectrum of an
elastic continuum, where an ‘ad hoc’ cut-off frequency has to be advocated, Montroll
naturally finds an upper bound �D ¼ ½ð�0 þ 2�00Þ=�2M�

1=2 to the spectrum of the allowed
frequencies �, as a consequence of the discrete nature of the lattice model he considers.
The density of vibrational modes gMð�Þ can then be expressed as

gMð�Þ ¼
1

2
½gþð�Þ þ g�ð�Þ�, ð4Þ

where, for � ¼ 1
3, the densities of the two branches of allowed vibrational modes g�ð�Þ

assume the form

�Dg�ð f�DÞ ¼
24f

�2ð2� 3f 2Þ
K

3f 2

2� 3f 2

� �
if 0 � f 2 <

1

3
,

¼
8

�2f
K

2� 3f 2

3f 2

� �
if
1

3
< f 2 �

2

3
,

¼ 0 if f 2 >
2

3
, ð5aÞ

�Dgþð f�DÞ ¼
4f

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

3 f
2

q K f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3f 2

3� 4f 2

s !
if 0 � f 2 �

2

3
,

¼
8f

�2ð1� f 2Þ
K

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � ð2=3Þ

p
1� f 2

 !
if
2

3
< f 2 <

3

4
,

¼
8

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � ð2=3Þ

p K
1� f 2

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � ð2=3Þ

p
 !

if
3

4
< f 2 � 1,

¼ 0 if f 2 > 1, ð5bÞ
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where K(z) is the complete elliptic integral of the first kind [14]. Figure 2 shows

equation (4) as a function of f ¼ �=�D. It should be noted that (i) gMð�Þ is normalized

to unity, so that
R 1
0 �DgMð f�DÞdf ¼ 1; (ii) in the long-wavelength, low-energy regime the

density of vibrational modes is linear in frequency, with �DgMð f�DÞ � 4f=�; (iii) as a

consequence of the general behaviour of the elliptic integrals, gMð�Þ is affected by

(integrable) logarithmic singularities at f 2 ¼ 1
3 and

3
4, both values occurring away from

the range of frequencies where the linear regime applies (f9 0:1; cf figure 2). Such sin-

gularities have the same topological origin as van Hove singularities of

electronic spectra in 2D lattices (see refs [15–17], and refs therein).
The internal energy per mode of an assembly of vibrational modes obeying fractional

statistics, equation (1), and with frequency distribution given by equation (4), can then

be expressed as

EMðT Þ ¼

Z �D

0

h�gMð�Þf�ðh�,T Þd�: ð6Þ

Since the asymptotic low-temperature behaviour of the relevant thermodynamic

quantities (such as the internal energy, equation (6), and the specific heat at constant

volume) is only determined by the long-wavelength, low-energy vibrational properties,

we expect to recover a standard power-law T-dependence for such quantities in the limit

T ! 0, with

ðh�DÞ
2EMðT Þ ¼ aMðkBT Þ

3
þ � � � ð7Þ
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Figure 2. Density of vibrational states, equation (4), as in Montroll’s model for a square lattice, with
� ¼ 1

3 [13]. Note the two logarithmic singularities at ð�=�DÞ
2
¼ 1

3 and 3
4. The dashed line corresponds to the

low-energy, long-wavelength, linear regime.
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[cf also equation (7) below]. Figure 3 shows our numerical result for EMðT Þ,
equation (6), as a function of temperature, and for the numerical prefactor aM in its
low-temperature expansion, equation (7). In particular, figure 3 confirms the internal
energy T3-law at low temperature, regardless of the value of the statistical parameter
�, while the inset shows the actual �-dependence of the numerical prefactor aM
in equation (7). Such behaviours are recovered below in two further
examples, namely vibrational modes of a continuum model and magnons, both in
two dimensions.

3. Long wavelength properties: e.g. a single graphene layer

Since we expect sound waves to propagate at long wavelength in 2D lattices, the long
wavelength limit of the phonon dispersion relation !ðqÞ in, say, a single hexagonal
graphene layer must take the form

!ðqÞ ¼ vq̂s q, ð8Þ

where vq̂s is the velocity of sound. The corresponding density of vibrational states g(!) is
given by a d-dimensional Debye-like form

gdð!Þ ¼ Ad!
d�1, ! < !D, ð9aÞ

¼ 0, ! > !D, ð9bÞ

where !D is the Debye cut-off frequency. For d¼ 3, we recover the usual Debye
spectrum, while for d¼ 2, our concern here, we have g2ð!Þ ¼ A2!. This linear
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Figure 3. Internal energy per mode EMðT Þ vs. temperature T for Montroll’s model of phonons in a 2D
lattice, equation (6), for equally spaced values of the statistics parameter � between 0 (BE) and 1 (FD).
Energy and temperature are in units of h�D and h�D=kB, respectively. Inset shows the numerical coefficient aM
in the low-temperature asymptotic expansion, equation (7), as a function of �.
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dependence on ! is indeed recovered from Montroll’s model discussed above in the
limit ! ! 0. From normalization arguments, the constant A2 is determined, for a
graphene layer, by the requirement

2N ¼

Z !D

0

A2! d! ¼
1

2
A2!

2
D, ð10Þ

with N the number of C atoms in the graphene layer.
Hence the internal energy E(T ) is given by

E2ðT Þ ¼

Z !D

0

�h!g2ð!Þf�ð�h!,T Þd!

¼

Z !D

0

�h!2A2f�ð�h!,T Þd!: ð11Þ

With �¼ 0, f�¼0ð�h!,T Þ becomes the BE distribution function with �¼ 0

fBEð�Þ ¼
1

expð	�Þ � 1
: ð12Þ

This will yield the internal energy E2ðT Þ as T ! 0 as

E2ðT Þ ¼ a2
4Nk3B
�h2!2

D

T3 þ � � � , ð13Þ

with a2ð� ¼ 0Þ ¼ 2�ð3Þ � 2:40411, �(x) denoting Riemann’s �-function.
Hence, from thermodynamics, the low-temperature specific heat CV is given by

CV ¼
dE2ðT Þ

dT
¼ 3a2

4Nk3B
�h2!2

D

T2 þ � � � , ð14Þ

a result that goes back at least to Krumhansl and Brooks [12] and also to Klein and
Smith [18].

For the single graphene layer, as for a 2D system, we expect that anyon fractional
statistics may obtain for the phonon quasiparticles, with a fractional statistics
parameter �. Therefore, we have numerically performed the frequency integration in
equation (11), and our results for E2ðT Þ are shown in figure 4 [19]. In the low-tempera-
ture limit, we again recover the T3 asymptotic dependence of E2 on temperature,
equation (13), but now with a numerical coefficient a2 interpolating between the
value 2�ð3Þ for BE statistics (�¼ 0), and 3

2 �ð3Þ � 1:80309 for FD statistics (�¼ 1;
cf inset in figure 4). Therefore, the introduction of anyon statistics does not modify
the exponents in the power laws of the low-temperature asymptotic behaviour of the
relevant thermodynamical quantities, as could be expected from a dimensional analysis
of equation (11) (noting that the statistical distribution f� is dimensionless). Both the
overall temperature dependence of the internal energy and the �-dependence of the
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numerical prefactor a2 in the low-T expansion equation (13) in figure 4 agree with their
counterparts for anyonic vibrational frequencies of a discrete lattice, figure 3.

One should refer here to the very thorough discussion of both calculations and
measurements of the phonon dispersion of graphite that has been given recently by
Wirtz and Rubio [20]. A brief mention, in addition to this study of a graphene layer,
should be made to phonons in MgB2 [21], another layered material of considerable
interest currently because of its superconductivity up to Tc ¼ 39:4K [22].

4. Insulating 2D ferromagnet: low temperature spin wave excitations

Bloch’s famous T3=2-law [23] for the temperature dependence of the magnetization
M(T ) of a 3D insulating ferromagnet, namely (see, e.g., ref. [24])

MðT Þ ¼ Mð0Þ �m1T
3=2 þ � � � , ð15Þ

comes from the long-wavelength magnon dispersion relation

!ðqÞ ¼ sq2 þ � � � : ð16Þ

In less than three dimensions, it has been shown by Bloch [23] that such systems with
reduced dimensionality should not exhibit spontaneous magnetization, even in cases
where the exchange integral is positive. This is in agreement with the celebrated
Mermin–Wagner theorem [25], which forbids the occurrence of truly off-diagonal
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Figure 4. Internal energy E2ðT Þ vs. temperature T for long-wavelength phonons in a 2D lattice,
equation (11), for equally spaced values of the statistics parameter � between 0 (BE) and 1 (FD). Energy
and temperature are in units of 4N�h!D and �h!D=kB, respectively. Inset shows the numerical coefficient a2
in the low-temperature asymptotic expansion, equation (13), as a function of �.
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long-range order in 1D and 2D systems, even at very low temperatures, because of
fluctuations. Therefore, Klein and collaborators [26,27] (see also ref. [28]) studied the
temperature dependence of the magnetization of a thin ferromagnetic film. As the
film thickness decreases, they found a crossover from the 3D power law,
Mð0Þ �MðT Þ / T3=2, equation (15), to a power law with modified exponent,
Mð0Þ �MðT Þ / T, for film thicknesses below some 10 atomic layers.

Equation (16) leads to a constant ‘density of states’, 
 say, of such magnons at low
frequencies and thus the internal energy E(T ) is given at low temperatures by

EðT Þ ¼

Z 1

0

�f�ð�,T Þ
d� ð17Þ

in 2D, where f� is the anyon fractional statistics distribution function written above in
equation (1), with its T dependence now noted explicitly. One finds

EðT Þ



¼ b2ðkBT Þ

2, ð18Þ

with b2 decreasing from the BE limit b2ð� ¼ 0Þ ¼ �ð2Þ ¼ �2

6 � 1:64493, to the FD limit
b2ð� ¼ 1Þ ¼ 1

2 �ð2Þ ¼
�2

12 � 0:822467. Figure 5 shows the numerical coefficient b2 as a
function of the statistics parameter �.

5. Summary

We have raised here the question as to whether anyon fractional statistics may need to
be invoked for quasiparticles in 2D systems: especially phonons and magnons. To study
whether experiment could tell whether such quasiparticles needed to have an associated
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Figure 5. Numerical coefficient b2 in the low-temperature dependence of the magnon internal energy,
equation (18).
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fractional statistics parameter, we have investigated, in addition to a model 2D vibrat-
ing lattice solved analytically for the phonon spectrum by Montroll [13], the low
temperature specific heat of a single graphene layer. In particular, we have explored
numerically how CV / Tn, with n ¼ 2:00� 0:05 found experimentally, [11] could
embrace the introduction of a fractional statistics parameter �. Correspondingly,
we find a low-temperature asymptotic expansion E2 / Tnþ1, invariably with n¼ 2,
regardless of the value of the statistics parameter �, but with a slowly decreasing
numerical coefficient as � increases from 0 (BE) to 1 (FD).

A briefer discussion of magnons has also been included. Again, one finds the same
power-law temperature dependence of the main thermodynamic quantities (internal
energy and specific heat) in the low-T regime, with a numerical coefficient weakly
depending on the statistics parameter �.
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